If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2+9p+6=4
We move all terms to the left:
7p^2+9p+6-(4)=0
We add all the numbers together, and all the variables
7p^2+9p+2=0
a = 7; b = 9; c = +2;
Δ = b2-4ac
Δ = 92-4·7·2
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-5}{2*7}=\frac{-14}{14} =-1 $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+5}{2*7}=\frac{-4}{14} =-2/7 $
| 5(x+3)=-3x+9=2x | | 4=4x+4(x-11) | | -6b+6=-7b | | 74-2c=116-8c | | 2g-12=2 | | 10+6p=-4p | | 3n-4=2(5-2n) | | 7x^2+3x-4=- | | x•9=117 | | -6k+6=-7k | | 6y=24-3y | | 10h=-10+9h | | x2+1=65 | | 6n-5+n=2(4n-7)-n | | x+7=1/2(x+2) | | .35=(.047)((x)/(98000000))(2.97) | | 2t8=-4(t+1) | | 4x+12(5x+11)=4 | | a-2=(3+6a)/3 | | 35=(.047)((x)/(98000000))(2.97) | | 6-c=10c= | | -6–4u=-3u | | 1-p+9p=25 | | x=63x-1 | | c³=1728 | | 5b+43=11b+7 | | c³=1,728 | | 4x+21=7 | | 4k-(9-3k)=8k-1 | | 7x+1=12x-8 | | 64+8w=92+6w | | 4=9(+6-37g-) |